Chapter 2

Specifying Syntax

Once you’ve learned how to program in some language, learning a new program-
ming language isn’t all that hard. When learning a new language you need to know
two things. First, you need to know what the keywords and constructs of the lan-
guage look like. In other words, you need to know the mechanics of putting a pro-
gram together in the programming language. Are the semicolons in the right places?
Do you use begin...end or do you use curly braces (i.e. { and }). Learning how a pro-
gram is put together is called learning the syntax of the language. Syntax refers to
the words and symbols of a language and how to write the symbols down in the
right order.

Semantics is the word that is used when deriving meaning from what is written.
The semantics of a program refers to what the program will do when it is executed.
Informally, it may be much easier to say what a program does than to describe
the syntactic structure of the program. However, syntax is a lot easier to describe
formally than semantics. In either case, if you are learning a new language, you
need to learn something about the syntax of the language first.

2.1 Terminology

Once again, syntax of a programming language determines the well-formed or
grammatically correct programs of the language. Semantics describes how or
whether such programs will execute.

* Syntax is how things look
* Semantics is how things work (the meaning)

Many questions we might like to ask about a program either relate to the syntax
of the language or to its semantics. It is not always clear which questions pertain to
syntax and which pertain to semantics. Some questions may concern semantic issues
that can be determined statically, meaning before the program is run. Other semantic
issues may be dynamic issues, meaning they can only be determined at run-time.
The difference between static semantic issues and syntactic issues is sometimes a
difficult distinction to make.

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1 2,
© Springer Science+Business Media, LLC 2008

22 Specifying Syntax

Example 2.1

Apparently

a=b+c;
is correct C++ syntax. But is it really a correct statement?

1. Have b and c been declared as a type that allows the + operation?
2. Is a assignment compatible with the result of the expression b+c?
3. Do b and c have values?

4. Does the assignment statement have the proper form?

There are lots of questions that need to be answered about this assignment state-
ment. Some questions could be answered sooner than others. When a C++ pro-
gram is compiled it is translated from C++ to machine language as described in
the previous chapter. Questions 1 and 2 are issues that can be answered when
the C++ program is compiled. However, the answer to the third question above
might not be known until the C++ program executes. The answers to questions 1
and 2 can be answered at compile-time and are called static semantic issues. The
answer to question 3 is a dynamic issue and is probably not determinable until
run-time. In some circumstances, the answer to question 3 might also be a static
semantic issue. Question 4 is definitely a syntactic issue.

Unlike the dynamic semantic issues discussed above, the correct syntax of a pro-
gram is definitely statically determinable. Said another way, determining a syntacti-
cally valid program can be accomplished without running the program. The syntax
of a programming language is specified by something called a grammar. But before
discussing grammars, the parts of a grammar must be defined. A terminal or token
is a symbol in the language.

¢ C++ terminals: while, const, (, 5, 5, b
* Terminal types are keywords, operators, numbers, identifiers, etc.

A syntactic category or nonterminal is a set of objects (strings) that will be defined
in terms of symbols in the language (terminal and nonterminal symbols).

e C++ nonterminals: <statement>, <expression>, <if-statement>, etc.
» Syntactic categories define parts of a program like statements, expressions, dec-
larations, and so on.

A metalanguage is a higher-level language used to specify, discuss, describe,
or analyze another language. English is used as a metalanguage for describing pro-
gramming languages, but because of the ambiguities in English, more formal met-
alanguages have been proposed. The next section describes a formal metalanguage
for describing programming language syntax.

2.2 Backus Naur Form (BNF) 23

2.2 Backus Naur Form (BNF)

Backus Naur Format (i.e. BNF) is a formal metalanguage for describing language
syntax. The word formal is used to indicate that BNF is unambiguous. Unlike En-
glish, the BNF language is not open to our own interpretations. There is only one
way to read a BNF description.

BNF was used by John Backus to describe the syntax of Algol in 1963. In 1960,
John Backus and Peter Naur, a computer magazine writer, had just attended a con-
ference on Algol. As they returned from the trip it became apparent that they had
very different views of what Algol would look like. As a result of this discussion,
John Backus worked on a method for describing the grammars of languages. Pe-
ter Naur slightly modified it. The notation is called BNF, or Backus Naur Form or
sometimes Backus Normal Form. BNF consists of a set of rules that have this form:

<syntactic category> ::= a string of terminals and nonterminals
”::=" means “’is composed of ” (sometimes written as —)

Often, multiple rules defining the same syntactic category are abbreviated using
the ”|” character which can be read as ”or” and means set union. That is the entire
language. It’s not a very big metalanguage, but it is powerful. Consider the following
examples.

Example 2.2

BNF Examples from Java

<primitive type> ::= boolean
<primitive type> ::= char

Abbreviated

<primitive type> ::= boolean | char | byte | short | int | long | float | ...
<argument list> ::= <expression> | <argument list> , <expression>
<selection statement> ::=

if (<expression>) <statement>
| if (<expression>) <statement> else <statement>
| switch (<expression>) <block>
<method declaration> ::=

<modifiers> <type specifier> <method declarator>

throws <method body>
| <modifiers> <type specifier> <method declarator> <method body>
| <type specifier> <method declarator> throws <method body>
| <type specifier> <method declarator> <method body>

The above description can be described in English as the set of method dec-
larations is the union of the sets of method declarations that explicitly throw an
exception with those that don’t explicitly throw an exception with or without mod-
ifiers attached to their definitions. The BNF is much easier to understand and is
not ambiguous like this English description.

24 Specifying Syntax

2.3 The EWE Language

EWE is an extension of a primitive language called RAM designed by Sethi[29] as a
teaching language. RAM stands for Random Access Machine. You might ask, “Did
you intentionally name this language EWE?”. “Yes!”, I'd sheepishly respond. You
can think of the EWE language as representing the language of a simple computer.
EWE is an interpreter much the way the Java Virtual Machine is an interpreter of
Java byte codes. EWE is much simpler than the language of the Java Virtual Ma-
chine.

Example 2.3

Consider the C++ program fragment.

int a=0;
int b=5;
int c=b+1;
a=bxc;
cout << a;

L N

The EWE code below implements the C++ program fragment above.

1

+ one

* C

writeInt (a)

halt

equ a MI[O0] b M[1] c M[2] one M[3]

® w o U s W o —
L Q
I
oo I oo

As you can see, there is a very close correspondence between the C++ program
and the EWE program. You can’t write c=b+1 in EWE directly. That required a little
extra work. Of course, that’s not the only program that might implement the C++
program fragment given above.

Example 2.4

Here’s another EWE program that computes the same thing as the C++ program
fragment given above. This EWE program isn’t quite as straightforward as the
last one, but they do the same thing.

int a=0;

RO:=0 # load 0 into RO
M[SP+12] :=R0O

int b = 5;

R1:=5 # load 5 into R1
M[SP+13] :=R1

int c = b+1l;

R2:=SP # b+l

R2:=M[R2+13] # load b into R2

© ® N v A W D -

2.3 The EWE Language 25

10 R3:=1 # load 1 into R3
11 R2:=R2+4+R3

12 M[SP+14]:=R2

13 # a = bxc;

14 R4:=SP # bxc

15 R4:=M[R4+13] # load b into R4
16 R5:=SP

17 R5:=M[R5+14] # load c into R5
18 R4:=R4%R5

19 R6:=SP

20 M[R6+12]:=R4
21 R7:=M[SP+12]
2 writeInt (R7)

23 halt

2% equ SP M[10] equ RO M[O] equ R1 MI[O]
25 equ R2 M[O0] equ R3 M[1] equ R4 MI[O]
% equ R5 M[1] equ R6 M[1] equ R7 MI[O0]

The EWE language’s interpreter recognizes one statement per line. Comments
begin with a # and extend to the end of the line. The statements are followed by
equates that equate identifiers to memory locations. The EWE computation model
consists of:

* data memory locations specified by MJ...]
* an instruction memory containing statements

Statements in a EWE program are executed in sequence unless a goto statement is
executed. Statement execution terminates when an error occurs or the halt statement
is executed.

EWE BNF

The syntax of the EWE language is completely specified by the BNF given on
page 26. The semantics of the interpreter is not. The null symbol is there to draw
attention to the fact that the equates part may be empty (there might not be any
equates in a program). Keywords are not case sensitive. Strings are delimited by
single or double quotes.

The readStr function reads a string and places the first character in the first mem-
ref location. It continues putting characters of the string in successive memory lo-
cations until either the string ends or the string surpasses the length stored in the
second memref minus 1. Strings are terminated with a null (i.e. 0) character. Note
that while a single memory location is big enough to hold four characters, only one
character is placed in each memory location.

The writeStr function writes a string starting at the memref location and extend-
ing in successive memory locations until a null character is encountered. If a null
character does not terminate the string, the interpreter will raise an illegal memory
reference exception.

26 Specifying Syntax

<eweprog> ::= <executable> <equates> EOF

<executable> ::=
<labeled instruction>
| <labeled instruction> <executable>

<labeled instruction> ::=

"goto" Integer

"goto" Identifier

"if" <memref> <condition> <memref> "then" "goto" Integer
"if" <memref> <condition> <memref> "then" "goto" Identifier
"halt"

"break"

Identifier ":" <labeled instruction>

| <instr>
<instr> ::=

<memref> ":=" Integer
| <memref> ":=" String
| <memref> ":=" "PC" "+" Integer
| "PC" ":=" <memref>
| <memref> ":=" <memref>
| <memref> ":=" <memref> "+" <memref>
| <memref> ":=" <memref> "-" <memref>
| <memref> ":=" <memref> "«" <memref>
| <memref> ":=" <memref> "/" <memref>
| <memref> ":=" <memref> "$" <memref>
| <memref> ":=" "M" "[" <memref> "+" Integer "]"
["M" "[" <memref> "+" Integer "]" ":=" <memref>
| "readInt" " ("<memref> ")"
| "writeInt" " (" <memref> ")"
| "readStr" " ("<memref> "," <memref> ")"
| "writestr" " (" <memref> ")"
|
|
|
|
|
|

<equates> ::=
null
| "equ" Identifier "M" "[" Integer "]" <equates>

<memref> ::=
"M" " [" Integer "] n

| Identifier

<condition> ::= ">=" | ">" | "<=" ["< o pom=T e

Listing 2.1: The EWE BNF

2.3 The EWE Language 27

F Practice 2.1

The following program is not a valid EWE program. Using the BNF for EWE
list the problems with this program.

readln (A);
readln (B);
if A-B < 0 then
writeln (A)
else
writeln (B);

[N T

How could you rewrite this program so that it does what this program intends to
do?

¥ Practice 2.2

Write a EWE program to read a number from the keyboard and print out the
sum of all the numbers from 1 to that number.

Example 2.5

EWE is essentially an assembly language. It contains a few higher-level con-
structs, but very few. The EWE program given below upper cases all the char-
acters in a string read from the keyboard. The simple way to write an assembly
language program is to first write it in a high-level language. For instance, the
program might look something like this in a C-like language.

}

1 s = input();

2 1= 0;

3 while s[i] != 0 {

4 if ('a' <= s[i] && s[i] <= 'z")
5 s[i] = s[i] - 'a' + 'A';

6 i++;

;

8

9

printf ("%s",s)

When writing the program in EWE you will want to program the opposite of
any if-then or while loop conditions you wrote in the high-level language. This is
because you are going to use a goto statement to assist in completing the code. If
the condition is false in an if-then statement you will jump around the then part
of the statement by jumping to code that is after the then part. The code below
shows you the EWE code with the appropriate C code intermingled as comments.
Comments in EWE begin with a pound sign (i.e. #).

1 zero:=0

2 one:=1

3 littlea := 97
4 littlez := 122
5

diff:=32

28 Specifying Syntax

s = input ();

len:=100

readStr (s, len)

1=0;

1:=100

while s[1]!=0 {

loop: tmp:=M[i+0]

if tmp = zero then goto end

if ('a' <= s[i] && s[i] <= 'z")
if littlea > tmp then goto skip
if tmp > littlez then goto skip
s[i] = s[i] - 32;
tmp:=tmp-diff

M[i+0] :=tmp

skip:

i++;

i:=i+one

goto loop

printf ("%$s",s)

end: writeStr(s)

halt

equ zero M[0] equ one M[1l] equ littlea M[2]
equ littlez M[3] equ diff M[4] equ len M[5]
equ s M[100] equ tmp M[6] equ i M[7]

F Practice 2.3

Write a EWE program that reads a list of numbers from the screen and prints
them out in reverse order. In order to do this exercise you need to know some-
thing about indexed addressing (see the example above).

HINT: What kind of data structure lets you reverse the elements of a list?

2.4 Context-Free Grammars

Another name for a BNF grammar is a context-free grammar. The only difference is
in the metalanguage used to write the grammar. A context-free grammar is defined
as a four tuple:

G=(ANT,2,7)

where

* ¥ is aset of symbols called nonterminals or syntactic categories.

T is a set of symbols called terminals or tokens.
& is a set of productions of the form n — o where n is a nonterminal and « is a
string of terminals and nonterminals.

» .7 is a special nonterminal called the start symbol of the grammar.

2.5 Derivations 29

Example 2.6

A grammar for expressions in programs can be specified as G = (A, .7, 2 E)
where

N ={E,T,F}
T = {identifier,number,+,—,x,/,(,)}
& is defined by the set of productions
E—E+T|E-T|T
T —T«F|T/F|F
F — (E) | identifier | number

2.5 Derivations

A sentence of a grammar is a string of tokens from the grammar. A sentence belongs
to the language of a grammar if it can be derived from the grammar. This process
is called constructing a derivation. A derivation is a sequence of sentential forms
that starts with the start symbol of the grammar and ends with the sentence you are
trying to derive. A sentential form is a string of terminals and nonterminals from
the grammar. In each step in the derivation, one nonterminal of a sentential form,
call it A, is replaced by a string of terminals and nonterminals, 8, where A — 3 is a
production in the grammar.

While the previous paragraph is a bit dense to read the first time it really isn’t
that hard. An example should clear things up.

Example 2.7

Prove that the expression (5*x)+y is a member of the language defined by the
grammar given in example 2.6 by constructing a derivation for it.

The derivation begins with the start symbol of the grammar and ends with the
sentence.

E=E+T=T4+T=F+T=(E)+T=(T)+T= (T*F)+T = (FxF)+
T=0G+«F)+T= 5+x)4+T = (5%x)+F = (5*x)+y

The underlined parts are all examples of sentential forms.

F Practice 2.4

Construct a derivation for the expression 4 + (a — b) *x.

30 Specifying Syntax

Types of Derivations

A sentence of a grammar is valid if there exists at least one derivation for it using
the grammar. There are typically many different derivations for a particular sentence
of a grammar. However, there are two derivations that are of some interest to us in
understanding programming languages.

* Left-most derivation - Always replace the left-most nonterminal when going
from one sentential form to the next in a derivation.

* Right-most derivation - Always replace the right-most nonterminal when going
from one sentential form to the next in a derivation.

Example 2.8

The derivation of the sentence (5x*x)+y in example 2.7 is a left-most deriva-
tion. A right-most derivation for the same sentence is:

E=E+T=E+F=E+y=T+y=F+y= (E)+y=(T)+y= (T*
F)+y=(T*x)+y= (F*x)+y= (5%x)+y

¥ Practice 2.5

Construct a right-most derivation for the expression x *y + z.

2.6 Parse Trees

A grammar for a language can be used to build a tree representing a sentence of the
grammar. This kind of tree is called a parse tree for reasons that will become clear
in the next section. A parse tree is another way of representing a sentence of a given
language. A parse tree is constructed with the start symbol of the grammar at the
root of the tree. The children of each node in the tree must appear on the right hand
side of a production with the parent on the left hand side of the same production. A
program is syntactically valid if there is a parse tree for it using the given grammar.

While there are typically many different derivations of a sentence in a language,
there is only one parse tree. This is true as long as the grammar is not ambiguous.
In fact that’s the definition of ambiguity in a grammar. A grammar is ambiguous if
and only if there is a sentence in the language of the grammar that has more than
one parse tree. See section 2.11 for more information.

Example 2.9

The parse tree for the sentence derived in example 2.7 is depicted in figure 2.1.
Notice the similarities between the derivation and the parse tree.

2.7 Parsing 31

i

g
U
0

000
Gy

Fig. 2.1: A Parse Tree

& Practice 2.6

What does the parse tree look like for the right-most derivation of (5*x)+y?

F Practice 2.7

Construct a parse tree for the expression “4+(a-b)*x”.
HINT: What has higher precedence, “+” or “*”? The grammar given above auto-
matically makes “*” have higher precedence. Try it the other way and see why!

2.7 Parsing

Parsing is the process of detecting whether a given string of tokens is a valid sen-
tence of a grammar. Every time you compile a program or run a program in an
interpreter the process described in this section is executed. Sometimes it completes
successfully and sometimes it doesn’t. When it doesn’t you are told there is a syntax
error in your program. A parser is a program that given a sentence, checks to see if
the sentence is a member of the language of the given grammar. It may or may not
construct a parse tree for the sentence at the same time.

* A top-down parser starts with the root of the tree
* A bottom-up parser starts with the leaves of the tree

32 Specifying Syntax

Code
Generator
Source Parse Assembly
Program Tree Language

Fig. 2.2: Flow of Data surrounding a Parser

Top-down and bottom-up parsers check to see if a sentence belongs to a grammar
by constructing a derivation for the sentence, using the grammar. A parser either
reports success (and possibly returns the parse tree) or reports failure (hopefully
with a nice error message). The flow of data is pictured in figure 2.2.

2.8 Parser Generators

A parser generator is a program that given a grammar, constructs a parser for the
language specified by the grammar. This is a program that generates a program as
pictured in figure 2.3. Examples of parser generators are yacc and ml-yacc. They
both generate bottom-up parsers.

Parser
Generator

Grammar

Parse
Tree

Source
Program

Fig. 2.3: Flow of Data surrounding a Parser Generator

2.11 Other Forms of Grammars 33

2.9 Bottom-Up Parsers

As described above, bottom-up parsers are generally generated by a parser generator
like ml-yacc (used by ML programs) or yacc (used by C and C++ programs). Parser
generators construct a parse tree from the bottom up. We can be more specific.
They actually construct a reverse right-most derivation of the sentence (i.e. Source
program).

A parser generator works by (possibly) looking at the next token (i.e. terminal)
in the input and then decides based on that and the partial derivation so far which
production to apply to get the next step in the reverse right-most derivation. This
algorithm uses a particular type of abstract machine called a push-down automaton.
You need a particular kind of grammar to construct a push-down automaton called
an LALR(1) grammar. Many grammars are LALR(1). You can learn more about
push-down automata in a compiler construction text. It is beyond the scope of this
book.

2.10 Top-Down Parsers

Top-down parsers are generally written by hand. They are sometimes called re-
cursive descent parsers because they can be written as a set of mutually recursive
functions. A top-down parser constructs a left-most derivation of the sentence (i.e.
source program).

A top-down parser operates by (possibly) looking at the next token in the source
file and deciding what to do based on the token and where it is in the derivation.
To operate correctly, a top-down parser must be designed using a special kind of
grammar called an LL(1) grammar.

2.11 Other Forms of Grammars

As a computer programmer you will likely learn at least one new language and
probably a few during your career. New application areas frequently cause new lan-
guages to be developed to make programming applications in that area more con-
venient. Java, JavaScript, and ASP.NET are three new languages that were created
because of the world wide web. A recent trend in programming languages is to de-
velop domain specific languages. So if you are designing elevator controllers you
may be programming in a language that was specially designed for that purpose.

Programming language references almost always contain some kind of reference
that describes the constructs of the language. Many of these programming references
give the grammar of the language using a variation of a context free grammar. A few
examples of these grammar variations are given here to make you aware of notation
that is often used in language references.

34 Specifying Syntax

CBL (Cobol-like) Grammars

These were originally used in the description of Cobol. They are not as formal as
BNFE.

Optional elements are enclosed in brackets: [].

Alternate elements are vertically enclosed in braces: { }.

Optional alternates are vertically enclosed in brackets.

A repeated element is written once followed by an ellipsis: ...

Required key words are underlined; optional noise words are not.

Items supplied by the user are written as lower case or as syntactic categories
from which an item may be taken.

A

Example 2.10

Here is the description of the COBOL ADD statement.

<Cobol Add statement> ::=
ADD identifier ,identifier .. TO
number ,number
identifier [ROUNDED]], identifier [ROUNDED]] ...
[ON SIZE ERROR <statement> |

One such add statement might be:

ADD A, 5 TO B ROUNDED, D
ON SIZE ERROR PERFORM E-ROUTINE

Extended BNF (EBNF)

Since a BNF description of the syntax of a programming language relies heavily on
recursion to provide lists of items, many definitions use these extensions:

1. item? or [item] means item is optional.

2. item* or {item} means to take zero or more occurrences of an item.
3. item+ means to take one or more occurrences of an item

4. Parentheses are used for grouping

Example 2.11

Here is can example of method declarations in Java.

<method declaration> ::=
<modifiers>? <type specifier>
<method declarator> throws ? <method body>

2.11 Other Forms of Grammars 35

Syntax Diagrams

A syntax diagram is a graph or graphs that have been used to describe Pascal and
other programming languages.

Nk L=

A terminal is shown in a circle or oval.

A syntactic category is placed in a rectangle.

The concatenation of two objects is indicated by a flowline.
The aternation of two objects is shown by branching.
Repetition of objects is represented by a loop.

Example 2.12

Here are some descriptions of simple expressions in Pascal. Each of these dif-
ferent methods describe the same simple expressions in Pascal. Notice that some
descriptions are more compact than the BNF. Each of them are unambiguous in
their descriptions.

While BNF is less compact, it is the easiest to enter on a keyboard and for com-
puter programs to read. There is a trade-off between computer readability and
human readability that is at the center of many of our decisions about how to
formally define programming languages.

BNF

<simple expr> ::=
<term>
| <sign> <term>
| <simple expr> <adding operator> <term>

<sign> =47 | 47
<adding operator> ::= “+” | “-” | “or”
CBL
<simple expr> ::=
n +
[_} <term> — p <term> | ...
or

EBNF

<simple expr> ::= [<sign>] <term> {<adding operator> <term>}

36 Specifying Syntax

Syntax Diagram

C@\‘ > tem | vV vV ¥ >
U 00

F Practice 2.8

According to the syntactic specification in example 2.12, which of these terminal
strings are simple expressions, assuming that a, b, and c are legal terms:

1. a+b-c
2. -aorb+c
3.b--c¢

Ambiguous Grammars

As stated above, a grammar is ambiguous if there exists more than one parse tree
for a given sentence of the language.

Example 2.13

The classic example is nested if-then-else statements. Consider the following
Pascal statement:

if a<b then
if b<c then
writeln ("a<c")
else
writeln("?")

O N

Which if statement does the else go with? It’s not entirely clear. According to
the grammar, it could go with either. This means there is some ambiguity in
the grammar for Pascal. This resolved by deciding the else should go with the
nearest if. In a bottom-up parser this is called a shift/reduce conflict. In this case
it is resolved by shifting instead of reducing.

2.12 Abstract Syntax Trees 37

F Practice 2.9

Consider the expression grammar

<expr> ::= identifier | <expr> <operator> <expr>
<operator>::= “+7 | <7

Consider the terminal string a « b + c.

Give two parse trees for this expression. This ambiguity could be resolved by
specifying a precedence of operators in the grammar. However, there are better
methods than specifying precedence. Precedence of operators can also be spec-
ified by introducing extra productions. See example 2.6 on page 29 for a better
way of writing the grammar for this language.

2.12 Abstract Syntax Trees

There is a lot of information in a parse tree that isn’t really needed to encapsulate
the program that it represents. An abstract syntax tree is like a parse tree except that
non-essential information is removed. More specifically,

* Nonterminal nodes in the tree are replaced by nodes that reflect the part of the
sentence they represent.
* Unit productions in the tree are collapsed.

Example 2.14

For example, the parse tree from figure 2.1 on page 31 can be represented by
the following abstract syntax tree.

Cadd
S0 OO

This tree eliminates all the unnecessary information and leaves just what is es-
sential for evaluating the expression. Abstract syntax trees are used by compilers
while generating code and by interpreters when running your program. Parse trees
are usually not built by the parser, but the parser still constructs a derivation to check
the syntax of a program. Usually, at the same time the abstract syntax tree is built.

[S O

38 Specifying Syntax

F Practice 2.10

What does the abstract syntax tree of 4+(a-b)*x look like?

2.13 Infix, Postfix, and Prefix Expressions

The abstract syntax tree in example 2.14 represents a computation. We can recover
the infix expression it represents by doing an inorder traversal of the abstract syntax
tree. To recall, an inorder traversal operates as follows:

Inorder_traverse (t a tree)
If t is an empty tree, do nothing
inorder_traverse (left subtree of t)
print the data of the root node in the tree t
inorder_traverse (right subtree of t)

F Practice 2.11

Assume there is a BTNode class in your favorite object-oriented language with
appropriate constructors, and getData, getLeft, and getRight member functions
which return the data at a node, the left subtree, and the right subtree respectively.
Write some code to implement this inorder traversal of a tree. Assume the AST
in example 2.14 is given as input. What is the output? Is there anything wrong?

¥ Practice 2.12

How does this code change to do a postorder traversal? What is the output given
the tree in example 2.14.

2.14 Limitations of Syntactic Definitions

The concrete syntax for a language is almost always an incomplete description. Not
all terminal strings generated are regarded as valid programs. For instance, consider
the EWE BNF on page 26. A memory reference can be an identifier. The identifier
must be defined in an equ statement. But, there is nothing in the grammar specifying
this relationship.

In fact, there is no BNF (or EBNF or Syntax Diagram) grammar that generates
only legal EWE programs. The same is true for C++, Java, ML, and all programming
languages. A BNF grammar defines a context-free language: the left-hand side of
each rules contains only one syntactic category. It is replaced by one of its alternative

2.14 Limitations of Syntactic Definitions 39

definitions regardless of the context in which it occurrs. The set of programs in any
interesting language is not context-free.

Context-sensitive features may be formally described as a set of restrictions or
context conditions. Context-sensitive issues deal mainly with declarations of identi-
fiers and type compatibility.

Example 2.15

These are all context-sensitive issues.

— In an array declaration in C++, the array size must be a nonnegative value.

— Operands for the && operation must be boolean in Java.

— In a method definition, the return value must be compatible with the return
type in the method declaration.

— When a method is called, the actual parameters must match the formal param-
eter types.

40 Specifying Syntax

2.15 Exercises

Nk » D=

—_

12.
13.

14.

15.

16.

17.

A e)

What does the word syntax refer to? How does it differ from semantics?

What is a token?

What is a nonterminal?

What does BNF stand for? What is its purpose?

Describe what the rules in lines 35-37 of the EWE BNF on page 26 mean. An-
swer this in some detail. Saying they define equates is not enough.

According to the EWE BNF, how many labels can an instruction have?

Given the grammar in example 2.6, derive the sentence (4+5)*3.

Draw a parse tree for the sentence (4+5)*3.

What kind of derivation does a top-down parser construct?

What would the abstract syntax tree for (4+5)*3 look like?

Describe how you might evaluate the abstract syntax tree of an expression to get
a result? Write out your algorithm in English that describes how this might be
done.

List four context-sensitive conditions in your favorite language.

Write a EWE program that prompts the user to enter three numbers and prints
the max of the three numbers to the screen. Think about this before attempting
to write it. It might be harder than you think at first.

Write a EWE program that prompts the user to enter a string and prints the reverse
of that string to the screen.

Write a EWE program that prompts the user to enter a string and prints the string
back to the screen with the first letter of each word upper cased.

Write a EWE program that asks the user to enter a number and prints either the
square root of the number if it is an integer or the two integers the square root
falls between if it is not an integer result. EWE does not operate on real numbers.
It only works with integers and strings.

Using the EWE interpreter, write a program that prompts the user for a number
and prints the factorial of that number.

2.16 Solutions to Practice Problems 41

2.16 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 2.1

Here is a correct version of the program. As you can see there are several things
wrong with the original.

readInt (A

readInt (B

C := A -

zero := 0

if C >= zero then goto pastwrtA
writeInt (A)

)
)
B

R TR S S VR SR

goto end
pastwrtA:
writeInt (B)
10 end:
1 halt
12 equ A M[0] equ B M[1] equ C M[2] equ zero M[3]

Solution to Practice Problem 2.2

The easiest way to write EWE programs is to write in a language like Java or
Python and then translate the code to EWE. Reverse any relational operators
to make the translation (see the previous exercise). So for instance, a less than
operator becomes greater or equal when translated into EWE. Here is a Python
version of the program.

I n = input ("Enter a postive integer:")
2 sum = 0

3 for x in range (n+l):

4 sum = sum + X

5

6 print "The sum is", sum

And here is a EWE version.

1 readInt (n)

2 sum := 0

3 one :=1

4 x =1

5 loop:

6 if x > n then goto end
7 sum := sum + X

8

X = X + one

42 Specifying Syntax

9 goto loop

10 end:

11 writeInt (sum)

12 halt

13 equ sum M[O0] equ one M[1] equ x MI[2] equ n M[3]

If you think hard about this problem there is a simpler version that is about three
lines long. You have to find the formula that computes the sum of the first n
integers, though.

Solution to Practice Problem 2.3

You need to use indexed addressing to create a stack.

1 SP := 100

> hundred := 100
3 zero := 0

4 one :=1

5 readloop:

6 readInt (x)

;

8

9

if x = zero then goto printloop
M[SP+0] := x
SP := SP + one
10 goto readloop
11 printloop:
12 SP := SP - one
13 if SP < hundred then goto end
14 X := M[SP+0]
15 writeInt (x)
16 goto printloop
17 end:
18 halt
19 equ SP M[O0] equ hundred M[1] equ x M[3]
20 equ zero M[4] equ one MI[5]

Solution to Practice Problem 2.4

This is a left-most derivation of the expression.
E=E+T=T+T=F+T=4+4T=4+4+T*F =>4+FxF =4+ (E)*F =
44 (E-T)*F =44+ (T-T)*F =4+ (F-T)*F =>4+ (a—-T)xF =
44+ (a—F)*F =4+ (a—b)*F =4+ (a—b) xx

2.16 Solutions to Practice Problems 43

Solution to Practice Problem 2.5

This is a right-most derivation of the expression.
E=FE4+T=E+F=E+z=THz=>TxF+z=>T*y+z=>F*xy+z=
xXxy+z

Solution to Practice Problem 2.6

Exactly like the parse tree for any other derivation of (5*x)+y. There is only one
parse tree for the expression given this grammar.

Solution to Practice Problem 2.7

2
S5
& go

®/® @5%@ -
POY
Y @
Q @
©

Fig. 2.4: The parse tree for practice problem 2.7

Solution to Practice Problem 2.8

1. a+b-cis a valid simple expression.

44 Specifying Syntax

2. -aorb + cis a valid simple expression.
3. b--cisnot a simple expression.

Solution to Practice Problem 2.9

In this problem we have a choice of putting the * or the + operator closer to
the top of the tree. This will give us two different trees depending on which we
choose.

Solution to Practice Problem 2.10

o)
e
o
@/Q\ca

Fig. 2.5: The parse tree for practice problem 2.10

Solution to Practice Problem 2.11

L R R I SRR R

void inordertraverse (BTNode root) {
if (root == nil) then return;

inordertraverse (root.getLeft ());
System.out.println (root.getData()+ " ");
inordertraverse (root.getRight ());

}

The output would be 5 + x * y. The traversal has thrown away the parentheses. If
parens are needed the inorder traversal code could be modified to produce a fully
parenthesized expression.

2.16 Solutions to Practice Problems 45

Solution to Practice Problem 2.12

The println statement would move to the last line of the function. The postorder
output would be 5 x +y *. No parens are needed in a postfix expression.

46 Specifying Syntax

2.17 Additional Reading

This chapter introduces you to programming language syntax and reading syntactic
descriptions. This is a worthwhile skill since you will undoubtedly come across new
languages in your career as a computer scientist. There is certainly more that can be
said about the topic of syntax of languages. Aho, Sethi, and Ullman [1] have written
the widely recognized book on compiler implementation which includes material on
syntax definition and parser implementation. There are many other good compiler
references as well. The Chomsky hierarchy of languages is also closely tied to this
topic. Many books on Discrete Structures in Computer Science introduce this topic
and a few good books explore the Chomsky hierarchy more deeply including an
excellent text by Peter Linz [21].

2 Springer
http://www.springer.com/978-0-387-79421-1

Frogramming Languages

An Active Learning Approach
Lee, K.D.

2008, XIV, 282 p., Hardcowver
ISBM: 978-0-287-79421-1

